NARINGENIN COUMAROYLGLUCOSIDES FROM MABEA CAUDATA*

DIONES A. D. BARROS, MARDEN A. DE ALVARENGA, OTTO R. GOTTLIEB and HUGO E. GOTTLIEB†

Instituto de Química, Universidade de São Paulo, 05508 São Paulo, SP, Brazil; †Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel

(Received 1 December 1981)

Key Word Index—Mabea caudata; Euphorbiaceae; naringenin; naringenin 7-O-(p-coumaroylglucosides).

Abstract—The fruits of *Mabea caudata* contain, besides 5.7.4'-trihydroxyflavanone (naringenin), naringenin $7-O-\beta-(3.6-di-p-coumaroylglucoside)$ and naringenin $7-O-\beta-(3-p-coumaroylglucoside)$.

INTRODUCTION

The genus *Mabea* Aubl. comprises 50 species distributed over tropical Central and South America [2]. One of these species, *M. caudata* Peth., is well represented in Amazonian forest regions. Fruits of the tree yielded (2S)-5,7,4'-flavanone (naringenin, 1a) and two novel compounds (1b, 1c).

ia R=H

1b R= β -3, 6-Di- ρ -Coumaroylglucosyl

Ic $R = \beta - 3 - p$ -CoumaroyIglucosyI

RESULTS AND DISCUSSION

Acid hydrolysis of 1b and 1c gave, besides glucose and p-coumaric acid, naringenin. In both compounds the C-7 hydroxyl group of the naringenin moiety must be substituted, since, as with the aglycone, UV AlCl₃ shifts are observed, but, unlike the aglycone, the UV spectra are not changed upon addition of NaOAc. All 270-MHz ¹H NMR spectral features of 1b are amenable to first-order analysis (Table 1) and led to assignments which were confirmed by the complete series of decoupling experiments. The signals due to H-3 (δ 5.28) and both H-6 (δ 4.37, 4.60) of the glucose moiety appear at relatively low field demonstrating esterification of the hydroxyls at these sites by p-coumaric acid. The analysis of the analogous spec-

trum of 1c is less straightforward, only H-1 and H-2 giving fully resolved signals (respectively at δ 5.26 and 3.70). Here only one of the carbinolic protons of the glucose moiety is represented by a signal at relatively low field (δ 5.23). This must belong to H-3 since double irradiation at this frequency affected the H-2 signal and vice versa.

With respect to stereochemical features, the protons on the anomeric carbons in both, 1b and 1c, occupy α -positions, in view of their axial-axial relationships with H-2 (J=8 Hz, Table 1). The 2S-configurational assignment for naringenin (1a) results from the observation of a positive Cotton effect for the $\pi \to \pi^*$ transition [3].

EXPERIMENTAL

Isolation of the constituents. Fruits of M. caudata were collected by Hipólito F. Paulino Filho near Humaitá, Amazonas State, from a specimen identified by Dr. William A. Rodrigues, INPA, Manaus. The powder (250 g), obtained from dry fruits, was percolated in succession with C₆H₆ and EtOH. The EtOH extract (6.5 g) was suspended in Me₂CO and filtered. The Me₂CO extract (5 g) was chromatographed on a dry column (100 g Si gel deactivated with 10% H₂O, C₆H₆-EtOAc, 1:1). The extruded column was cut into 6 equal segments numbered 1-6 from column bottom to top. The segments were eluted with Me₂CO. Eluate 1 (120 mg) was washed with CHCl₃ and purified by prep. TLC (Si gel, C₆H₆-Me₂CO, 7:3) to give 1a (16 mg). Eluates 2 and 3 (2.5 g), repeatedly chromatographed in the same way, yielded slightly less polar 1b (375 mg) and slightly more polar 1c (250 mg).

Naringenin (1a), mp 246–248° (MeOH) (lit. [4] mp 248°). ORD (MeOH, 250): $|\phi|_{500}^{80} + 2000$, $|\phi|_{316}^{80} = 0$, $|\phi|_{330}^{80} - 1100$, $|\phi|_{345}^{80} = 340$, $|\phi|_{350}^{80} = 0$, $|\phi|_{350}^{80} = 0$.

Naringenin 7 - O - β - (3,6 - di - p - coumaroylglucose (1b), mp 155-158° (CCl₄-Me₂CO 8:2). [Found: C, 64.91; H, 4.85. C₃₉H₃₄O₁₄ requires: C, 64.46; H, 4.72%.] UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 285, 310 (ϵ 50 000, 40 750); no NaOAc shift; $\lambda_{\text{max}}^{\text{MeOH+AlCl}_3}$ nm: 305 (ϵ 50 300). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3509, 1712, 1642, 1616, 1517, 1443, 1250 (br), 837. Acetate (1b, Ac₂O, C₅H₅N, 24 hr, room temp.), mp 116-118° (CCl₄-Me₂CO, 8:2). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1795, 1629, 1529, 1462, 1397, 1328, 1200 (br), 923, 853.

^{*}Part 4 in the series "The Chemistry of Brazilian Euphorbiaceae". For part 3 see ref. [1]. Based on part of the M.Sc. thesis presented by D.A.D.B., on leave of absence from Faculdade de Farmácia e Odontologia de Riberirão Preto, to Universidade de São Paulo (1981).

Table 1. ¹H NMR data of 1a, 1b, 1c and derivatives [270 MHz (1b, 1c) and 60 MHz (1a and acetates)], in Me_2CO-d_6 (1a-1c) or CDCl₃ acetates, TMS an int. standard]*

Assignments	1a	Acetate of 1a	1b	Acetate of 1b	1c	Acetate of 1c
Naringenin						
H-2	5.46 dd	5.60 dd	5.40 dd	5.2-5.4 m	5.50 dd	5.2-5.4
	(12, 4)	(14, 4)	(12.5, 3)		(12.5, 3)	
H-3	2.66 dd		2.77 dd		2.79 dd	
	(14, 4)		(17, 3)		(17, 3)	
	}	2.6-3.3 m	` ' '	2.7-3.2 m	}	2.7-3.2 m
H-3	3.20 dd		3.21 dd		3.25 dd	
	(14, 12)		(17, 12.5)		$(17, 12.5)^{-1}$	
HO-5	$11.8 \ s(br)$	_	11.5 s		11.5 s	
H-6		6.63 d	6.20 d	6.35 d	6.17 d	6.36 d
-	5.93 s	(3)	(2)	(3)	(2.5)	(3)
ſ	3.93 S					
H-8		6.80 d	6.25 d	6.43 d	6.21 d	6.43 d
		(3)	(2)	(3)	(2.5)	(3)
H-2', H-6'	7.35 d	7.51 d	7.51 d		7.40 d	7.5 d
	(8.5)	(9)	(8.5)		(8.5)	(8)
			}	7–7.5 m		
H-3', H-5'	6.80 d	7.20 d	6.90 d		6.90 d	7.2 d
	(8.5)	(9)	(9)		(9)	(8)
AcO-5		2.36 s	- 1		_	2.36 s
			}	2.35 s		
AcO		$2.30 \ s$	J			2.33 s
AcO		2.16 s	_			
Glucose						
H-1			5.32 d)	5.26 dd)
			(7.5)		(7.5, 4.5)	
H-2			3.78 dd		3.70 dd	
			(9, 7.5)		(9.5, 7.5)	
H-3			5.28 t	5.2-5.4 m	5.23 m	50.54
			(9)	3.2-3.4 m		5.2-5.4 m
H-4			3.78 dd		$3.92 \sim d$	
			(9, 7.5)		(7.5)	
H-5			4.08 ddd	(
			(9.5, 6, 2)]		J
TT /						
H-6			4.37 dd] }	3.75 m	
			(12, 2)	42.46		4-4.3 m
7T. 4			4.60 dd	4.3-4.6 m		1
H-6						
4.00			(12, 6)	J 1		Į
AcO				2.02 -	_	
AcO				2.03 s		2.03 s
AcO				J —		J
p-Coumarate			6.38 d		(20)	(22 3
Η-α			6.38 a (16)		6.38 d	6.33 d
			(10)	6.3 d	(16)	(16)
			6.40 d			
			6.40 <i>a</i> (16)	(16)		
Ц_Ω				-	765 1	7 70 4
Η-β			7.62 d		7.65 d	7.70 d
			(16)	7.7 d	(16)	(16)
			7 (7)			
			7.67 d	(16)		
			(16)	,		

Table 1—(continued)

		Acetate		Acetate		Acetate of 1c
Assignments	1a	of la	1b	of 1b	1c	
H-2, H-6			7.37 d)	7.55 d	7.6 d
			(8.5)		(8.5)	(8)
			7.56 d	}	_	
			(8.5)			
				7.75 m		
H-3, H-5			6.90 d		6.90 d	7.2 d
			(8.5)		(8.5)	(8)
			6.90 d		_	
			(8.5)	J		
]		2.33 s
AcO				2.35 s		
]	_	_

^{*}Coupling constants (Hz) in brackets.

Naringenin 7 - O - β - (3 - p - coumaroylglucose) (1c), mp 162-164° (EtOH) [Found: C, 62.56; H, 5.01. $C_{30}H_{28}O_{12}$ requires: C, 62.07; H, 4.86%.] UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 285, 310 (ϵ 26 400, 18 200); no NaOAc shift; $\lambda_{\text{max}}^{\text{MeOH+AlCl}_3}$ nm: 305 (ϵ 32 300). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3450, 1701, 1650, 1618, 1517, 1449, 1250 (br), 832. Acetate (1c, Ac₂O, C₅H₅N, 24 hr, room temp.), mp 138-141° (CCl₄). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1761, 1695, 1623, 1570, 1515, 1449, 1200 (br), 917, 845.

Hydrolysis of 1b and 1c. A suspension of the compound (80 mg) in H_2O -conc. HCl, 9:1 (7 ml) was heated under reflux for 4 hr [5], cooled and extracted with EtOAc. The presence of glucose was demonstrated in the aq. soin by direct TLC (Si get, n- $C_5H_{11}OH$ -AcOH- H_2O , 4:1:5) comparison with an authentic sample. The EtOAc extract (ca 45 mg) was separated by prep. TLC (Si gel, C_6H_8 - Me_2CO , 7:3) into less joint 1a and more polar q-coumaric acid. Both compounds were identified by direct comparison with authentic samples.

Acknowledgements—This work was supported by a FAPESP graduate fellowship to D.A.D.B. and by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico, Financiadora de Estudos e Projetos and Fundação de Amparo à Pesquisa do Estado de São Paulo.

REFERENCES

- Alvarenga, M. A. de, Silva, J. J. da, Gottlieb, H. E. and Gottlieb, O. R. (1981) Phytochemistry 26, 1159.
- 2. Jablansky, E. (1967) Mem. N. Y. Bot. Gard. 17, 167.
- 3. Gaffield, W. (1970) Tetrahedron 26, 4093.
- Hasegawa, M. and Shirato, T. (1957) J. Am. Chem. Soc. 79, 450.
- 5. Hegnauer, R. and Kooiman, P. (1978) Planta Med. 33, 1.